|
yesss I get it now.
the (1-%) is just giving us the remaining equity for the calculation.
(value_call) is when a flop happens, we need to calculate how often we will win/lose(equity) and how much (BB or $) to get a single (+ or - value) to plug into the full equation.
example: hero facing a 4bet shove.(villain opens UTG4x ,we3bet 12x,allfold,he 4bet shoves, 100bbstk)
villains range is TT+,AK,AQs
hero 3bet =88+, ATs+, KQs, AQo+, (86 combos) 100%
call4b=JJ+, AKs, AKo (40 combos) 46.5%
fold=TT-88, AQs-ATs, KQs, AQo (46 combos) 53.5%
EV= (fold%)*(-12) + (1-fold%)*(value_call)
value_call= (equity%)*(value_win) - (1-equity%)*(value_lose)
EV=(.535)*(-12) + (1-.535)*(value_call)
value_call= (.5735)*(95) - (1-.5735)*(95)
EV=(.535)*(-12) + (1-.535)*((.5735)*(95) - (1-.5735)*(95))
EV=.07
neutral EV then correct?
now I want to manipulate the ranges a little, say I call with only JJ+
fold = 72.1%
EV=(.721)*(-12) + (1-.721)*(value_call)
value_call= (.6198)*(95) - (1-.6198)*(95)
EV= (.721)*(-12) + (1-.721)*((.6198)*(95) - (1-.6198)*(95))
EV=-2.3
that didn't work. try TT+,AQs+,AKo 50 combos /86 = .581 (1-.581) = .419
EV=(.419)*(-12) + (1-.419)*(value_call)
value_call= (.5348)*(95) - (1-.5348)*(95)
EV= (.419)*(-12) + (1-.419)*((.5348)*(95) - (1-.5348)*(95))
EV= -1.18
fuck I expected to able to do it right the first time. ahhh cut down the 3bet %. duh . lol
3bet = hero 3bet =88+, AQs+,AKo 62 combos
fold = 88-TT,AQs 22 combos .354
call = JJ+,AKs,AKo 40combos
EV=(.354)*(-12) + (1-.354)*(value_call)
value_call= (.5735)*(95) - (1-.5735)*(95)
EV= (.354)*(-12) + (1-.354)*((.5735)*(95) - (1-.5735)*(95))
EV= +4.77
yesss
|